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Aim:Aim: Predictability Predictability and projection and projection 
of weather statistics of weather statistics 

with useful resolution and skillwith useful resolution and skill

• Overview of relevant methods
• Comparison of seasonal forecast skill achieved with 

statistical, hybrid (statistical downscaling of GCM) and fully 
dynamical techniques
• Winter (JFM) 1998 California precipitation

• Statistical and hybrid predictability of precipitation with and 
without ENSO forcing
• JFM heavy daily precip in the contiguous United States
• Seasonal cycle of skill for various precip variables

• Hybrid projections of anthropogenic climate change



Three Forecasting MethodsThree Forecasting Methods
• Statistical approach 

» Observed predictor and predictand fields are 
statistically related to each other at lags

• Hybrid approach (dynamical/statistical)
» global model forecast downscaled to regional 

precipitation using statistical relationship with 
station observations

• Fully dynamical approach
» Climate model forecast downscaled to 

regional precipitation using nested dynamical 
regional models



Dynamical, Hybrid and Statistical Dynamical, Hybrid and Statistical 
Forecasting ApproachesForecasting Approaches
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Total Precipitation Total Precipitation 
via a CCAvia a CCA--based based 
statistical modelstatistical model

overover

goodgood

underunder

JFM 1998JFM 1998

How about predicting frequencies How about predicting frequencies 
of extreme daily precipitation? of extreme daily precipitation? 

Gershunov et al., 2000, Journal of HydrometeorologyGershunov et al., 2000, Journal of Hydrometeorology

ENSO composite modelENSO composite model

ECHAM4 and CCA downscalingECHAM4 and CCA downscaling

ECHAM4 and RSM downscalingECHAM4 and RSM downscaling



DataData
Predictands
Daily station precipitation data (Eischeid et al. 2000) at 262 stations (points on 

Figures 2 and 6) 1950 1999. 
A “heavy” precipitation event is defined as daily precipitation total above the 

90th percentile of the seasonal local (station) 50-year (1950-1999) climatology. 
Seasonal frequency of such events (P90) is the main variable considered here. 

Total seasonal precipitation (Ptot) and frequency of daily precipitation total 
above the 50th and 75th percentiles (P50 and P75 respectively) are also considered. 

Predictors
SST data (Reynolds and Smith 1994) cover the common time period 1950-

1999. They are the same data used to force the AGCMs used here. 
Atmospheric circulation fields used as predictors are 500mb heights from 

NCEP/NCAR ReanalysisI (Kalnay et al. 1996) and from the ECHAM3 and CCM3 
AGCMs, all for the common period 1950-1999 and from the NSIPP AGCM for the 
period 1961-1999. All AGCM data are 10-member ensemble averages resolved 
on the T42 grid (roughly 2.8° x 2.8°). 



Hybrid MethodologyHybrid Methodology
• Predictor: Large-scale atmospheric circulation (i.e. 500mb heights) 

from 50-year global SST-forced AGCM ensemble integration 
• Predictand: Monthly precipitation or any statistic of observed 

weather/hydrology
• Statistical model:

» Predictor and Predictand fields are pre-filtered with p Principal 
Components (PCs)

» Patterns of variability in the Predictor and Predictand fields 
represented by their p respective PCs are related to each other 
via k canonical correlates derived from Canonical Correlation 
Analysis (CCA). k ≤ p « T, where T is the number of temporal observations 
available for model training

» The optimal statistical model is defined by considering cross-
validated measures of skill for all reasonable combinations of p
and k displayed on the Skill Optimization Surface (SOS)

• Forecast: Global SST is operationally forecast. The AGCM is 
forced by forecast SST. The Predictor field (500mb heights) is 
computed. Patterns in dynamically predicted circulation are 
downscaled to the Predictand using the optimal statistical model.



Statistical MethodologyStatistical Methodology
•Predictor: Observed monthly SST over a relevant geographic area

•Predictand: Observed monthly precipitation (lagging the SST field)

•Statistical model:
»Predictor and Predictand fields are pre-filtered with p Principal 
Components (PCs)

»Patterns of variability in the Predictor and Predictand fields 
represented by their p respective PCs are related to each other via k
canonical correlates derived from Canonical Correlation Analysis (CCA). 
k ≤ p « T, where T is the number of temporal observations available for model training

»The optimal statistical model is defined by considering cross-validated 
measures of skill for all reasonable combinations of p and k displayed 
on the Skill Optimization Surface (SOS)

•Forecast: Patterns in the SST field observed at appropriate lead time are
downscaled to the Predictand using the optimal statistical model.



Leading Coupled Mode: various predictorsLeading Coupled Mode: various predictors
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Specification Skill: JFM P90Specification Skill: JFM P90
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Statistical Prediction Skill: JFM P90Statistical Prediction Skill: JFM P90
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Hybrid vs. Statistical SummaryHybrid vs. Statistical Summary
• Seasonal frequencies of heavy daily 

precipitation are predictable via statistical and 
hybrid methods

• Less extreme statistics can be better predicted 
by either method

• Skillful seasonal predictability is achieved for 
ENSO as well as for non-ENSO years

• Pure statistical methodology is preferable for 
seasonal prediction

• Hybrid methods can be used for regional 
projections of long-term climate change



Anthropogenic climate change projections Anthropogenic climate change projections 
for 2001 for 2001 –– 2030 via statistical downscaling2030 via statistical downscaling
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Seasonal Seasonal -- InterannualInterannual PredictionPrediction
We know how to do thisWe know how to do this

•Dynamical downscaling may dominate in the 
future, but for now, it is the brute force solution
•Statistical downscaling is the compromise 
solution
•Statistical prediction (implicitly downscaled) is 
the reasonable solution

Climate Change PredictionClimate Change Prediction
We don’t yet know how to rigorously evaluate skillWe don’t yet know how to rigorously evaluate skill

•Dynamical downscaling: the brute force solution
•Statistical downscaling: the creative solution



Statistical vs. Dynamical Statistical vs. Dynamical 
DownscalingDownscaling

Disadvantages of Statistical Downscaling: 
» Requires observational data
» Assumes stationarity of relationships
» Does not predict more than a few variables at a time (no explicit 

guarantee of dynamical consistency)

Advantages of Statistical Downscaling: 
» Seasonal forecasting skill can be assessed rigorously and simply
» Acts as an implicit GCM bias corrector
» Can be used in diagnostic as well as in prognostic modes
» Can use large-scale patterns rather than regional grid cells for inputs
» Provides a reasonable alternative to dynamical downscaling of global 

climate change simulations in well-observed regions
» Built-in reality control



Where do we stand with respect to Where do we stand with respect to 
dynamical climate prediction?dynamical climate prediction?

• Statistical and hybrid techniques can 
provide a benchmark for dynamical 
approaches

• The main challenge to dynamical methods 
is a rigorous skill assessment.
» For this, consistent regional climatologies

need to be constructed
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